DGL-24 Kaggle Competition: 0-Deg.GraphLearners

Sadegh Emami
CID: 019925114

Timothy Wong
CID: 02109632

I. INTRODUCTION

The popularity of image super-resolution (SR) research
has grown significantly, especially with the adoption of Deep
Learning (DL) techniques [1]. SR methods increase the reso-
Iution of data such as brain connectivity matrices (BCMs),
i.e., compact representations of the strengths and patterns
of the structural connections between brain regions [2]. The
large-scale acquisition of high-resolution BCMs from raw
neuroimaging data is costly (time, money, compute). Brain
graph SR could significantly speed up acquisition, via the
generation of BCMs from existing ones, thus reducing the
cost of research and increasing the availability of brain data
for clinical applications (e.g., Alzheimer’s detection [3]).

BCMs are naturally represented as graphs (nodes: regions;
edges: connections), making the use of Graph Neural Net-
works (GNNs) more intuitive and efficient than traditional
DL approaches. Recently, many graph-based frameworks have
been proposed for brain graph SR [4]-[8]. Inspired by Graph-
UNet [9], we propose a framework to learn the generation
of higher-resolution brain graphs inductively: GraphNET-
byNET (GNByN).

II. DATASETS
A. Low and High Resolution Dataset

The dataset initially comprised low-resolution (LR) and
high-resolution (HR) encodings of brain connectivity, rep-
resented in vectorized formats as Ajg € R!X12720 apd
Apr € RIX35778 respectively [10]. First, we reconstructed
a symmetric matrix A from its vector representation x. This
reconstruction involved vertically filling the matrices in a
symmetric manner, while setting the diagonal elements of the
matrices to zero. In the derived adjacency matrices, each ele-
ment Arg ; ; and Apg ; ; quantifies the strength of connectivity
between two brain regions ¢ and j. The dataset comprised 279
samples, of which 167 were allocated for the training set and
112 for the testing set.

B. Node Features Initialization

Instead of random node feature initialization, we employed a
Variational Autoencoder (VAE) to initialize the node features.
This method encodes each row of the adjacency matrix into
a 32-dimensional embedding in latent space, which serves as
initial node feature vector. To augment our data, we encoded
embeddings from one-hop adjacency matrices A! (represented
as Xg) and three-hop adjacency matrices A (represented as
Yo).

Dilay Ercelik
CID: 02467079

Konstantinos Mitsides
CID: 01857560

Moritz Hauschulz
CID: 02353757

C. Data Preprocessing - Upsampling

To enhance the generalisability of our model, we upsampled
the data by replicating the minority class of graphs five times,
where the number five was chosen as it empirically showed
the most promising validation results. More specifically, we
obtained each graph’s 130-dimensional embedding and applied
Spectral Clustering to separate the data into a minority-class
cluster and a majority-class cluster. Spectral Clustering was
chosen for its effectiveness in identifying clusters within data
that have complex structures, like graph embeddings.

While upsampling the data slowed down the training and led
to slightly higher training losses, it contributed to regularizing
the model and achieving significantly lower validation losses.
This approach likely prevented the model from memorizing the
most frequent graph instances, hence enhancing the model’s
expressiveness in capturing detailed and complex graph struc-
tures.

III. METHODS
A. High-level Model Architecture

Shown Figure 3, GNByN it is comprised of the UpChanger
and the DownChanger, which are each made up of 7 blocks
of GCN layers. Each block inputs and returns two node
feature matrices and an adjacency matrix, which is responsible
of changing the number of nodes that they represent. For
the UpChanger, the number of nodes changes in the order
of 160,175,191, 206, 222, 237, 253, 268. The same values are
adopted for the DownChanger but reversed.

This is similar to the architecture of Graph-UNet [9], where
the dimensionality of the adjacency matrices is projected
down, through the DownChanger, and back up, through the
UpChanger, via incremental change in dimensionality using
GCN layers. However, to project a low-dimensional object
to a higher dimension, it is key to learn a projection pro-
gressively by intermediate steps. Thus, our model learns a
mapping between the LR and HR brain connectivity encoding
through a path of intermediate projections of the encoding over
incremental change in dimensionality. Intuitively, this anchors
the UpChanger and DownChanger, such that during training
both of them will converge towards an invertible one-to-one
mapping between the LR and HR encodings.

Naturally, to support our design philosophy, GNByN has
the characteristic to be deep and stacked with multiple GCN
layers. However, as noted by Rusch et al. [11], GNNs generally
face the problem of over-smoothing, where deeper networks
encounter converging node features and would fail to dif-
ferentiate nodes. Hence, GNByN adopts the Graph-Coupled

Oscillator Network (GraphCON) [12] framework to combat
over-smoothing. Since GraphCON requires two node feature
matrices to be updated simultaneously at each block for the
oscillating-behaviour, we initialised them using A! and A3
mentioned in II-B.

B. Graph Convolution Block

To change the dimensionality, a linear mapping from the
input dimension to the new dimension is applied to each object
inside the block. Yet, to incorporate topological information
of the graph, the block uses the adjacency matrix and one
of the node feature matrices from its input to create a new
node feature matrix through a GATv2Conv layer [13]. The
attention layer has two attention heads, such that the new
node feature matrix contains more information that can be
used for projecting it to a different node dimension. Note
that, this enriched information will later be compressed again
with a generic convolution layer to resolve the dimensionality
mismatch between the new node feature matrix and the ones
from the input.

Then, to obtain the new adjacency matrix from the new
node feature matrix and old adjacency matrix, we incorporate
a forget gate and input gate, which function similarly to how
they do in LSTM layers [14]. The rationale is that there should
be a long-term dependency over the chain of the adjacency
matrices in how they evolve over the different dimensions,
and short-term influence based on the node-embeddings and
graph convolution. Finally, the new node feature matrices are
transformed and outputted based on the GraphCON frame-
work, and then passed into the next block.

C. Invariance and Equivariance Properties

The SR task regards only the adjacency matrix, and node
embeddings are only of auxiliary value. With respect to
the final auxiliary embeddings, our network is not permuta-
tion invariant. In GNByN, if the input A;. is permuted to
PT A, P, then this new node ordering will be preserved by
our GATv2Conv layers and dimensionality transformations.
Note that invariance in the sense fo(PT A;,.P) = fo(Ay,) is
undesirable, since this would map two potentially different
input brains to the same output brain. Similarly, note that
equivariance in the sense fo(PT A}, P) = PT fo(Ay,)P is ill-
defined, since the dimensions of A;. and fp(A;,) differ.

D. Training Strategy

When given a batch of data during training, it is utilised
over three stages of the procedure in a sequential manner.
Firstly, the LR and HR data are passed into the UpChanger and
the DownChanger, respectively, to obtain the two sequences
of adjacency matrices over all the steps. Between the two
sequences, the adjacency matrices with the same number of
nodes are compared to compute the average MSE loss. While
keeping the UpChanger frozen, this loss is backpropagated to
update the parameters of the DownChanger.

The process repeats in the next stage with the same data
handling for matrix sequence generation. Although MSE loss

is calculated step-wise over the two sequences, it is a weighted
average, where, at epoch t, the final HR projection from the
UpChanger has a weight of «; and the rest of the steps
have a equal weight of 1 — ay. We defined o, to be oy =
(2 — exp(—t/5))/2, such that the loss focuses more on the
correctness of the final HR projection as training progresses.
Based on this loss, the optimiser updates the parameters of the
UpChanger while keeping the DownChanger frozen.

Lastly, the LR projection of the HR ground truth is returned
by the DownChanger, and this projection is then passed into
the UpChanger to obtain the corresponding HR projection. A
reconstruction loss is calculated based on the HR projection
and the ground truth, and is used to update the parameters in
both the UpChanger and DownChanger.

The goal of this training strategy is to: 1) rely on the
DownChanger to ensure that the projections of the adjacency
matrices at each step converges, 2) generate the correct HR
projection using the UpChanger while still keeping its inter-
mediate projections anchored at each step, 3) strengthen the
model’s generalisability against unseen data when its input
data is injected with some noise from the reconstruction.

IV. RESULTS AND DISCUSSION

To determine the best model, we conducted a 3-fold cross-
validation on the training data. Figure 1 presents the final
results of this validation process. The results demonstrate
a high PCC, signifying a strong positive linear correlation.
Also, the JSD is observed to be low, indicating a high
similarity between the probability distributions. The MAE
has an approximate value of 0.13, which underscores the
precision of our predictions. Multiple topological metrics were
also explored, including PageRank centrality, betweenness
centrality, and eigenvalue centrality. Displayed in the same
figure, the corresponding MAE values for these metrics are
very low, which attests to the accurate reproduction of the
graph’s topological characteristics in our model.

During training, the A30 GPU 24GB was used. The average
memory usage recorded is 7.7 GB, which falls well within
the processing capabilities of the NVIDIA A30 GPU. The
memory usage peaked at 11 GB, which likely occurred during
a forward pass of the neural network. This peak is considered
satisfactory as it does not deviate hugely from the average
usage, indicating a balanced memory demand. The training
duration was approximately 83 minutes, consistent with the
expected time frame for a model of this complexity.

After 3-fold cross-validation, we selected the model with
the best results for further training. Utilising the LR training
dataset, we allocated 80% for model training and reserved
20% for validation (Figure 2). Then, we employed the LR test
data to evaluate our finalized model. Our final outputs are then
generated by vectorising all the upper triangular elements per
predicted HR matrix. Lastly, on Kaggle our model attained
a score of 0.1323 on the public test set (ranking 20th) and
0.1530 on the private test set (ranking 16th).

[1]

[2]

[3]

[4]

[6]

[7]

[8]

[9]
[10]

[11]
[12]
[13]

[14]

REFERENCES

H. X. Q.L. W. Y. R. C. S. R. E. . Z. C. Chen, H., “Real-world single
image super-resolution: A brief review,” Information Fusion, vol. 79,
pp. 124-145, 2022.

R.J.D.B. A. V.H.J. D..B. S. Y. Brown, J. A., “The ucla multimodal
connectivity database: a web-based platform for brain connectivity
matrix sharing and analysis,” Frontiers in Neuroinformatics, vol. 6,
no. 28, 2012.

C.J. H. S. C.L S. P G . Z Y Shan, X., “Spatial-temporal
graph convolutional network for alzheimer classification based on brain
functional connectivity imaging of electroencephalogram,” Human Brain
Mapping, vol. 43, no. 17, pp. 5194-5209, 2022.

. R. I Isallari, M., “Gsr-net: Graph super-resolution network for predict-
ing high-resolution from low-resolution functional brain connectomes,”
Machine Learning in Medical Imaging: 11th International Workshop,
MLMI 2020, vol. 12436, pp. 139-149, 2020.

. R. L. Isallari, M., “Brain graph super-resolution using adversarial
graph neural network with application to functional brain connectivity,”
Medical Image Analysis, vol. 71, no. 102084, 2021.

N. A. M. M. A. . R. 1. Mhiri, L., “Non-isomorphic inter-modality
graph alignment and synthesis for holistic brain mapping,” International
Conference on Information Processing in Medical Imaging, pp. 203—
215, 2021.

K. A. B. M. M. A. . R. I. Mhiri, I., “Brain graph super-resolution
for boosting neurological disorder diagnosis using unsupervised multi-
topology connectional brain template learning,” Medical Image Analysis,
vol. 65, no. 101768, 2020.

. R. I. Rajadhyaksha, N., “Diffusion-based graph super-resolution with
application to connectomics,” International Workshop on PRedictive
Intelligence In MEdicine, pp. 96-107, 2023.

H. Gao and S. Ji, “Graph u-nets,” 2019.

W. Liu, D. Wei, Q. Chen, W. Yang, J. Meng, G. Wu, T. Bi, Q. Zhang,
X.-N. Zuo, and J. Qiu, “Longitudinal test-retest neuroimaging data from
healthy young adults in southwest china,” Scientific Data, vol. 4, no. 1,
p. 170017, 2017.

T. K. Rusch, M. M. Bronstein, and S. Mishra, “A survey on oversmooth-
ing in graph neural networks,” 2023.

T. K. Rusch, B. P. Chamberlain, J. Rowbottom, S. Mishra, and M. M.
Bronstein, “Graph-coupled oscillator networks,” 2022.

S. Brody, U. Alon, and E. Yahav, “How attentive are graph attention
networks?,” 2022.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

V. APPENDIX

Fold 1 Fold 2 Fold 3 Avg. Across Folds

0.5 0.5 0.5 0.5 ‘|’
0.4 4 0.4 0.4 0.4
I
0.3 0.3 03 0.3
0.2 0.2 0.2 0.2
=
0.1 0.1 01 01 0.300 A —— Training
—— Validation
0.0 0.0 0.0 0.0 0.275 4
& &8 & &8 & &8 & &S
0.025 0.025 0.025 0.025 0.250 4
I 0
0 0.225 A
0.020 0.020 0.020 0.020 3
% 0.2001
0.015 4 0.015 0.015 0.015 =
0.175 A
0.010 1 0.010 0.010 0.010
0.150 A
0.005 0.005 0.005 0.005
0.125 A
0.000 A= . . 0.000 +— . s 0.000 +— v v 0.000 L 5 . ; . . ; ;
O O O O O O O O O O O © 0 20 40 60 80 100
& & & & & & ¢ & & ¢
& & & W & Epochs
Fig. 1: Results from 3-fcv; MAE, PCC and JSD; MAE for Fig. 2: Training and validation MAE for final model.
betweenness, eigenvalue and pageRank Centrality.
@— | > Dy(X, + dtYy) } Vi1
(o)Lt ¥ DY, +dt(Z, — oY, —1X,) | X1

2-Cluster Lreconstruction
p P t \ p T
Ii/;;_sample A 33333333 7 U i 2-Cluster
inority
L &
path
A A e . A A e . A4 Upsample
Minorit
- Agown < A?mun A1 W inority
160 x 160 d; % d; 268 268

ﬁ

J

Fig. 3: High-level architecture and step-level computational graph. Batchnorm, layernorm and dropout layers are omitted.
Code repository can be consulted for details. Learnable parameters (and dimensions) excluding VAEs and standard layers:
Dy (dig1 X dy), Dag(digr x dy), Dy (channels X diy1), Ba (dig1 X 1), Bz (dig1 x 1), 4y (dps1 x 1), fo (deg1 X 1)

