Adaptive Speed Reading

Matis Bodaghi, Evangelos Georgiadis, Jack Hau,
Kyoya Higashino, Konstatinos Mitsides, Fadi Zahar
{mrb23, eg923, jhh23, kh123, km2120, {z221}@Qimperial.ac.uk

Supervisor: Dr Konstantinos Gkoutzis

COMP70079
Department of Computing
Imperial College London

April 29th, 2024

Adaptive Speed Reading April 29th, 2024

1 Introduction

In today’s digital information age, the ability to assimilate vast amounts of textual information rapidly
and effectively is not just an advantage—it is a necessity. As professionals across various fields are
constantly inundated with textual data, enhancing reading skills could dramatically increase their
efficiency. While existing techniques primarily focus on increasing reading speed, they often com-
promise the depth of understanding, leading to superficial knowledge [1]. Moreover, while current
speed-reading platforms may provide adaptive tools that help users read more quickly, they utilise
text-centric adaptivity and create a dependency without necessarily training users to apply these
skills in real-life situations. In this project, we focus on building a speed-reading trainer based on
user-centric adaptivity, adapting to the reader instead of the text to train users to effectively read
faster under any conditions. By consistently monitoring both the reading speeds and comprehension
levels of users, we aim to bridge the gap between reading speed and depth of understanding.

1.1 Background and Related Work

Speed reading is a technique that allows people to read and process written material at a much faster
pace than normal reading rates, with one of the most well-known techniques being Rapid Serial Visual
Presentation (RSVP) [2]. RSVP is a method that displays words sequentially at a fixed location on
the screen, eliminating the need for eye movements and the common habit of regression, which refers
to the unnecessary re-reading of previous lines or words. This technique aims to boost reading speeds
by reducing visual adjustments and allowing for a more focused absorption of content by presenting
text at controlled speeds. While earlier research indicated that RSVP could increase reading speed by
33% for short texts without affecting comprehension [3], more recent studies, such as one examining
the RSVP app Spritz [4], have revealed drawbacks. Although conventional RSVP effectively minimises
eye movements by displaying words sequentially, it has been found to impair literal comprehension
and increase visual fatigue due to the constant flashing of words discouraging users from blinking.

Chunking, on the other hand, is a technique that prioritises enhancing comprehension by grouping
words into larger, meaningful units. This method improves information processing by efficiently
utilising working memory capacity—the limited amount of information a person can hold in active
memory at one time. By helping the brain recognise patterns and connect concepts more rapidly,
chunking effectively boosts reading understanding [5}6].

Turning our focus to practical applications of these techniques, platforms like Spreeder [7] and
SwiftRead [8] have gained popularity. They both employ the RSVP technique to help users read
faster while offering tools to customise the reading experience, such as adjusting the word-per-minute
rate and the chunk size, which can be tailored to suit individual preferences and reading abilities.
Although these platforms provide various pre-reading customisation options and can adapt to the
characteristics of the text, they do not adapt to users themselves. This is because they lack mechanisms
to continuously monitor and adjust to users’ reading patterns in real-time. Moreover, these platforms
operate in ways that make users reliant on their specific tools to achieve faster reading speeds, focusing
on assisting users rather than training them.

1.2 Project Overview

Through our work, we aim to address the limitations identified in current speed-reading research
and related platforms by focusing on two main objectives: to enable user-centric adaptivity of speed-
reading tools and to serve as a training platform. The key innovation in our approach stems from
integrating WebGazer’s eye-tracking technology [9], which tracks users’ eye movements to dynam-
ically adjust the reading speed based on real-time observation of individual reading patterns. To
mitigate RSVP’s comprehension limitations while simultaneously adhering to our objective of acting
as a trainer, we combine traditional chunking techniques with an adapted RSVP format. This mod-
ified method presents the text in manageable chunks—typically around 8 words—facilitated through
an RSVP delivery, helping manage cognitive load more effectively. Moreover, this format encourages
natural left-to-right reading, mimicking real-life reading and reducing the visual fatigue often associ-

Adaptive Speed Reading April 29th, 2024

ated with conventional RSVP systems. To ensure that these innovations accelerate reading without
sacrificing comprehension, we continually monitor users’ reading speeds and comprehension through
quizzes linked to the text.

2 Project Design and Architecture

This section outlines the project administration, the technical direction that addresses the problems,
and the solutions that achieve the objectives.

2.1 Functionality Specification

The developed platform, called Kiraka (https://srp.doc.ic.ac.uk/), has various functionalities
that pinpoint each element of the project objectives. These are:

e Mode 1 (DocMode): DocMode provides a more familiar and traditional approach to speed
reading. Shown in the DocMode page of Figure[l} this mode serves as a baseline/standard trainer
and is useful for users new to speed reading, allowing users to read the full text at their own pace
with optional supplementary features. The first feature is a pointer guide that highlights words
at a rate which can be manually adjusted, pushing users to follow a sustained reading pace.
The second feature is HyperBold reading style, which bolds the first parts of the words to make
the text easier to process. While HyperBold may not always be available in real-life scenarios,
it makes the platform more accessible, especially to those who have ADD [10]. Furthermore,
the reading process is timed (can be restarted and paused) and is used to infer a user-specific
average number of words per minute (WPM). Additional styling features such as dark mode add
to the personalised experience.

e Mode 2 (FlashMode): Shown in the FlashMode section of Figure |1} this is a trainer and it
is Kiraka’s new approach to speed reading using innovative Al-powered features, building upon
popular methods of traditional speed reading such as chunking and modified RSVP techniques.
The text is divided into chunks, appearing at a rate that matches the WPM.

— Mode 2.1 (FlashMode — Static): In this mode, users manually adjust the pace at
which text chunks are presented. This control allows users to train their speed reading skills
effectively, providing a hands-on approach to learning without automated adjustments. This
also accounts for users who do not have camera access or do not wish to show their faces,
which is necessary for Mode 2.2 discussed below. While static mode does not incorporate Al
features, it differs from DocMode as it does not allow for re-reading, eliminating regression.

— Mode 2.2 (FlashMode — Adaptive): This mode addresses the project objective to
be adaptive. This mode utilises eye-tracking technology through the WebGazer library to
adapt the reading speed based on the user’s eye movement patterns—their gaze position over
time. This adaptive speed control aims to dynamically determine the optimal reading speed
based on user gaze data and adjusts the WPM to appropriately push the user. Furthermore,
each chunk is analysed with Al to adjust the speed based on its lexical complexity, slowing
when the text is difficult to read, and vice-versa.

e AI Quiz Generation: After reading, the platform utilises Al to generate quizzes, designed to
test comprehension immediately and ensure that speed enhancement does not come at the ex-
pense of retention or understanding. This feature is crucial as it addresses the speed-comprehension
trade-off, a common issue reported when using traditional speed reading approaches. The use
of Al to generate quizzes is instrumental as it permits users to upload their preferred texts,
reinforcing the platform’s user-centric focus.

e Users Analytics: An analytics page is provided to inform users of their reading and compre-
hension metrics. Presented through a series of graphs, users can reflect on their progress and
motivate themselves to keep practising on the Kiraka platform.

https://srp.doc.ic.ac.uk/

Adaptive Speed Reading April 29th, 2024

2.2 Software Engineering Design

The project team was organised into specialised roles with the project leader in charge of the overall
project trajectory and alignment with the goals. The Back End Team managed server-side func-
tionalities and database operations, while the Front End Team focused on user interface and user
experience design including the reading modes. The Artificial Intelligence (AI) Team was responsible
for integrating Large Language Models (LLMs) to generate dynamic content. To enhance flexibility
and responsiveness within the project framework, Agile methodologies, particularly Scrum [11], were
adopted. This approach included regular sprint planning sessions, daily stand-ups, and sprint reviews,
which facilitated dynamic adjustment and incremental development. Notion |12] served as our central
tool for note-taking, sprint planning (Appendix, and task management, while Microsoft Teams [13]
was indispensable for communication and meeting coordination among team members.

2.2.1 Front End Development

The front end of modern web applications plays a crucial role in delivering a convenient experience
for users. With this in mind, the front-end development of Kiraka is built using Next.js 14 [14], a
popular React framework, which offers a robust set of features for building efficient and scalable web
applications. The Next.js front end is responsible for rendering user interfaces and handling client-side
interactions. One of the core reasons why Next.js is chosen over its counterparts, like React and Vue,
is its built-in routing system, which simplifies page navigation within the Kiraka web app. With the
Next.js app router system, the routes are defined as a file structure inside the \app folder that maps
to specific pages or components.

Thorough design planning has gone into Kiraka’s front-end architecture to enhance user experi-
ence. The layout is organised to ensure content is presented logically and aesthetically, facilitating
easy navigation through consistent menu placements and user interface elements such as the sidebar.
Elements like quiz and calibration buttons are conditionally displayed based on the user’s interactions
and context to help keep the interface focused and uncluttered. For example, a quiz is only accessible
after reading the full text and calibration can only be attempted after WebGazer is activated. To assist
the users, pop-up boxes and tooltips are shown. These elements are crucial in enhancing the learning
experience by providing timely assistance. The user interface is highly adaptive, responding to various
user actions and preferences with real-time feedback. This includes customisable settings such as text
size and colour, improving reading conditions and overall accessibility. An appropriate colour scheme
is selected to provide the users with comfortable visualisation. Green, a low wavelength colour that
promotes restfulness and concentration [15], is chosen as the dominant colour in Kiraka, improving
efficiency and focus. To minimise eye strain, Kiraka employs an off-white/yellow background for all
reading interfaces. This easy-on-the-eye colour has shown improved reading performance [16] and is
also considered dyslexia-friendly, further supporting our commitment to diversity [17].

To optimise performance and enhance user experience, various strategies were employed. These in-
clude separating server-side and client-side components, server-side rendering for content-heavy pages,
client-side rendering for interactive elements, utilising React’s Context API for efficient state man-
agement, and leveraging client-side storage APIs (Local Storage and Session Storage) for caching
data, persisting user preferences, and maintaining state across page transitions. This comprehensive
approach aims to reduce load times, improve rendering performance, and optimise bundle sizes, ul-
timately providing a smooth and responsive user experience. Before releasing the app to users, an
optimised version is generated for production by creating HIT'ML, CSS, and JavaScript files based on
the pages. Using Next.js compiler, JavaScript is compiled and browser bundles are minified to help
achieve the best overall performance. The production-ready files are hosted in the Imperial College
Department of Computing’s virtual machine (VM). The Next.js application is running locally on the
VM'’s port 3000. To expose the application to the internet, Nginx, a web server and reverse proxy
server, is configured to serve over HT'TPS with SSL encryption as an additional layer of security.

The overview of the user journey can be visualised in Figure It begins at the landing page
with a clear hero section and buttons on the navbar. When users sign in, Kiraka leverages Clerk
[18], a third-party authentication, platform, to enable social connection with their Google, Apple,

Adaptive Speed Reading April 29th, 2024

Facebook, or Microsoft accounts. These OAuth providers allow secure authorisation to access users’
resources without sharing their credentials and going through complex registration flows. Users can
also use normal email addresses with passwords to create their accounts. Clerk’s authentication flow
simplifies the sign-up and sign-in process, resulting in a higher conversion rate and straightforward
experience. Kiraka thus offloads complex authentication logic, which reduces the risk of potential
security vulnerabilities that could arise from implementing custom authentication solutions. After
authenticated users are presented with platform instructions, they are then directed to our main
functionality, FlashMode Adaptive. Users can also navigate to other reading modes, where users
can then select the pre-existing texts or upload their own. WebGazer for FlashMode (Adaptive) is
activated by navigating via the calibration page. After a text is read, a quiz option pops up to prompt
users to validate their comprehension. At any time, users can go to the analytics page to monitor
their previous reading speed and quiz scores.

About Us Pricing Contact Us

Our Pricing Plang

@ - sidebar accessible
D - Reading Modes

- WebGazer AP

- FlashMode

=% - User Journey

.. -Fowof WPMData Landing Page SignIn Instruction Page @ Terms and conditions

=« - Flow of Quiz Data -

Pioneering Speed-Reading
Platform for
Start Students

]

DocMode @

Upload Page @

Quiz @

FlashMode Adapative (Calib.) @ Calibration
Analytics Page

i

Dashbeard Analytics

Figure 1: Snapshot of User Journey and Website Architecture

2.2.2 Back End and Database

The back end consists of two layers: a Flask application and a MariaDB database. Flask is a lightweight
Python framework used to handle the back end of web applications. It acts as the middleman between
the user and the database, handling HTTP requests and routing URLs to functions that perform
queries or modifications to the database and perform inference on the LLMs. The app deployed by
Flask runs a Python script in which API routes, as well as their functionality, are programmed.
Flask is highly configurable and supports extensions, Flask-CORS and SQLAlchemy, that can
achieve a robust level of security, safeguarding against various web application vulnerabilities effec-
tively. Flask-CORS is an extension for handling Cross-Origin Resource Sharing, which allows or
restricts resource sharing across different origins. Proper configuration of CORS is essential for pre-
venting unwanted cross-domain interactions and protecting against Cross-Site Request Forgery attacks

Adaptive Speed Reading April 29th, 2024

and data theft. SQLAlchemy allows the abstraction of SQL commands through Python classes, auto-
matically protecting against SQL injection, which is one of the most exploited security vulnerabilities.

MariaDB is a Relational Database Management System designed for efficient storage and querying
of data. All user data are stored in a single database, organised to the second normal form with
constraints ensuring each piece of data is uniquely identifiable. It consists of many tables to store
the users and their relevant data (see Figure |5 in Appendix . The database does not store any of
the user’s sensitive information related to login activity. Instead, the back end uses only the unique
identifier, created by Clerk for each user, to be stored in the Users table as a primary key. An admin
column stores a boolean value which determines whether the user is an administrator of the website.
Admin can view all the users’ test scores and reading speed via the unique identifier. Texts are stored
in a second table, and their corresponding quiz questions in a third. Upon upload, the text is broken
into chunks and the complexity of each chunk is calculated (see Section [3.2.2)). This design choice was
made so that the chunks and complexity—used to further adjust reading speed—are not calculated
on the go when a user starts reading a text in FlashMode. Finally, data from the users’ practice
sessions are stored. Each practice session row contains two foreign keys: the user’s primary key in
Users and the text’s primary key in Texts. The practice session’s key is referenced as a foreign key
in several tables which store the more granular data about a user’s practice session, like their quiz
results, their eye movements (gaze data over time) and their reading speed throughout the text when
using WebGazer.

The Flask app runs inside Waitress, a Web Server Gateway Interface (WSGI), which improves
its scalability, reliability and robustness, making it suitable for production environments. The API
functions allow the front end to fetch user information, retrieve texts and their relevant content, send
texts for storage in the database, and store the results of users’ practice sessions.

2.3 DevOps (Development & Operations)

To ensure efficient collaboration and code integrity, Git is employed as the version control system,
and the project codebase (https://gitlab.doc.ic.ac.uk/g237007906/kiraka) is hosted on Git-
Lab. The team followed a Git-Flow branching strategy to maintain work across the teams. This
defines specific branch responsibilities, such as “master” for production, “dev” for active development,
and feature branches (like ”FlashMode”) for new features. Continuous Integration and Continuous
Deployment (CI/CD) are implemented to streamline the development-to-production process and to
introduce automated testing and deployment. GitLab-Runner is configured on the VM to execute
the CI/CD pipeline to automate the test, build, and deployment workflows. When a feature branch
is merged to the dev branch, only the testing and building are triggered, whereas the entire pipeline
is activated when the dev is merged to the master branch. The CI/CD pipeline begins with code
linting using ESLint to enforce strict code quality standards and catch potential issues early. Then,
comprehensive unit tests are implemented. The testing pipeline is exclusively composed of unit tests
of the API routes, to check if the expected and actual HT'TP responses match. In addition to standard
requests, the test suite also checks the correct handling of requests attempting to tamper with another
user’s data, and of some edge cases where data is missing in the database or where the request format
is incorrect. The application is built and packaged for deployment upon successful linting and testing.
The packaged application is then deployed to the production environment hosted in the VM.

3 Technological and AI Integration

3.1 Webgazer Application and Optimisation
3.1.1 WPM Calculation and Display Mechanics in FlashMode

As highlighted in Section FlashMode functions as a speed-reading trainer successively displaying
chunks of text in short, rapid “flashes”. These chunks have been standardised to a maximum of 50
characters, roughly translating to 10 words assuming an average of 5 characters per word. In instances
of exceptionally long words, these are hyphenated and continued in the subsequent chunk(s). By fitting

https://gitlab.doc.ic.ac.uk/g237007906/kiraka

Adaptive Speed Reading April 29th, 2024

these chunks over most of the available screen width, FlashMode effectively displays proper sentences
that mirror the length of actual text lines, with an increased font to help enhance readability by
reducing eye strain and improving visibility. Each user will encounter identical text chunks for any
given text, precisely centred on the screen and scaled to their display through font size adjustments.
This format maintains the designated space for the sidebar and command sections and aligns with the
webcam for FlashMode Adaptive (refer to Figure . We utilise the monospaced ‘JetBrains Mono’
sans-serif font in displaying the text chunks. ‘Sans-serif’ fonts are characterised by cleaner, simpler
lines without decorative strokes at the ends, making them less visually complex and slightly more
readable. ‘Monospaced’ refers to the font having a fixed character width, which in this case is 60%
of the font size. This allows for precise calculation of the necessary text size to ensure that the
chunks fit within the display window, whose width varies with different screen dimensions. This
size is determined “client-side”, where font adjustments are made dynamically using the equation:

e width
fontsize = (max,char,per,chunk> x 0.6

At the core of FlashMode lies the timing of text chunk displays, which are directly related to the
set WPM rate. Assuming an average of five characters per word [19], the display time for each chunk,
in seconds, can be calculated by W x b, where chunk_length is the character length of the

chunk.

() o—0 (2 @ o—0 o—0
Gaze point x-range 1 Xx-range 3 X-range 4

Figure 2: Snapshot of FlashMode Adaptive illustrating the variability in x-ranges, highlighting that
these values are not absolute.

3.1.2 WebGazer: Usage and Challenges

Before utilising WebGazer’s eye-tracking capabilities, we begin with a calibration phase to activate the
library. Calibration is essential to ensure the accuracy of gaze data. Here, we store and monitor the
activity status of WebGazer using a React context (useContext) to check if it is active across different
components. After the initial calibration, our application begins to listen for gaze data at a sampling
rate near 30Hz (updates every 33 milliseconds), a process continuously running in the background. We
achieve this through a React useEffect hook that listens and responds when the eye-tracking feature
is active, as long as the user is not pausing their session, and as they navigate through different parts
of the text. These are the 'dependencies’ the hook monitors. Whenever one of these dependencies
changes, the useEffect adjusts, ensuring the application always responds with the most current gaze
data to adapt the reading experience in real-time. This gaze data, which consists of the gaze’s x and
y coordinates (in pixels, relative to the viewport) and elapsed time since WebGazer was initiated,
enables real-time analysis of the user’s reading patterns. It informs adjustments to the WPM which
are applied only after the end of the current chunk from which the data is collected during FlashMode,
effectively assigning a stable WPM to each chunk.

Adaptive Speed Reading April 29th, 2024

Building on the WebGazer setup, the main goal is to have the user’s pacing with the text at prede-
termined WPM rates actively monitored. Adjustments to the reading speed for subsequent chunks are
accurately determined, either increased or decreased, depending on whether it is found that users are
lagging or advancing. However, early on in our experiments, we observed that WebGazer’s gaze tracker
exhibited considerable inaccuracy and jitteriness. This was particularly noticeable in the y-direction,
likely because the iris has less vertical movement, limiting the precision of vertical displacement track-
ing. The accuracy was somewhat better in the x-direction, especially after updating the gaze-tracking
parameters, switching the regression model from “ridge” to “weightedRidge” and maintaining the
Kalman filter enabled for smoother predictions. This horizontal precision was advantageous in our
FlashMode, where large text chunks cover much of the screen width and the vertical direction is less
critical.

3.1.3 Algorithm Development and Milestones

In our first attempt for adaptive speed reading based on eye-tracking, we divided the user’s screen into
five sections: three main areas within the text display window and two ‘red’ zones flanking either side.
The total display time of T seconds for each chunk was equally distributed among the three main
regions, each lasting T/3 seconds. These regions served as references, indicating where the user’s
gaze should ideally be if their reading pace aligns with the set WPM. This tripartite division was
strategically chosen to minimise the impact of gaze data inaccuracies. Using this 'moving reference’
system, we started with the leftmost region as the reference for the first T/3 seconds. During this
period, gaze data was collected to determine the user’s reading pace: if the gaze was left of the
reference (indicating lagging), five points were subtracted; if to the right (indicating leading), five
points were added. The red zones operated on a higher scale, adding or subtracting ten points to
rapidly indicate significant pacing discrepancies. The process repeated for each region, and by the
end, a positive total average score suggested the user was ahead, while a negative implied lagging.
Adjustments to the WPM for the next chunk were based on these scores, halting point collection if
the user reached the far-right zone prematurely, indicating completion of the chunk (refer to Figure
in Appendix @ Following this initial approach, we found that the results did not satisfactorily reflect
the user’s actual reading pace and proved overly restrictive. The fundamental issue stemmed from the
reliance on absolute gaze positions, which are inherently inaccurate due to calibration inconsistencies,
variations in lighting conditions, user-specific factors like eyewear, head movements, and the jittery
nature of WebGazer itself. We observed significant discrepancies in where the x-value starts and ends
for a chunk— ”range shifts” (refer to Figure |2 in Appendix @, with start values between 364px to
649px and end values between 1424px to 1982px (refer to Figure in Appendix @—that did not
consistently align with the actual boundaries of the text display window. These variations led to
inconsistencies in gaze data both across different sessions and within individual sessions, rendering
this method ineffective for accurately tracking and adjusting reading speed.

Second attempt: After recognising the limitations of relying on absolute gaze positions, we shifted
our focus to using relative gaze positions, extending to gaze velocities, which offered a more reliable
measure, especially considering the 'range shifts’ previously discussed. To refine this method, we
considered linear regression to model the relationship between gaze position (z) over time, focusing
primarily on the slope of this relationship, which represents the velocity of the gaze movement. This
regression analysis was designed to filter out the noise and provide a stable measure of gaze velocity
by fitting a line to the gaze position versus the time plot. The slope (a) represents the gaze velocity,
calculated as the distance covered (d)—the chunk display width in pixels—divided by the time taken
in seconds (t'), thus a = %. Since display time (t) is inversely proportional to WPM = M,
we can derive the effective WPM from the slope: WPM = 12X0hunkjengthm. It should be noted
that this approach assumes that the span of x-values is relatively stable, which is not always the
case. Although user movements, such as returning their gaze to the start of a new chunk, resulted in
misleading negative slopes at the data’s edges, and issues like blinking introduced spikes in x-values
that WebGazer struggles to handle accurately, leading to low performance, this second attempt still
provided crucial insights into the velocity profiles of gaze position over time. Through experimental
observations, we established a critical threshold for gaze velocity. Specifically, on a laptop with a

Adaptive Speed Reading April 29th, 2024

screen width of 1728px and a word display width of 1201px, we identified that gaze speeds slower than
—21%(consistently indicated a user’s gaze returning to the left. This threshold, normalised for different
screen sizes, is calculated as —ﬁ x 100 (where 100 is a scaling factor). This normalised velocity
threshold has proven to be a robust indicator of the initiation of the return gaze movement to the left,

allowing us to adjust our system dynamically based on user interaction and screen dimensions.

3.1.4 Adaptive WPM Adjustment: Custom Integration and Functionality

Building on the analysis of our second attempt, we further refined our approach using a ”cat-and-
mouse” strategy that leverages user behaviour to dynamically adjust reading speeds. By specifically
monitoring the last 35% of the display time for leftward gaze movements—indicative of a user finishing
reading—we avoid early negative slopes caused by transitions from previous chunks and mitigate effects
such as blinking that can falsely signal a return gaze—refer to Figure [12]in Appendix [D] for detailed
visualisation. This focused observation ensures actions are based on reliable data, with negative x
velocities marking the user’s completion of the reading. Detected leftward movements immediately
trigger the advancement to the next chunk, with the WPM adjusted based on the actual time taken, t,
according to the formula WPM = M. To manage potential disruptions from blinking in the
crucial last 35% of the display time, we implemented a safeguard against excessive WPM increases.
Any increase between two consecutive chunks is capped at 60, and if cumulative increases exceed
90, a dampened increment of 5 WPM is applied. This adjustment mechanism ensures that the WPM
remains responsive yet controlled, avoiding unintended spikes due to artifacts like blinking. Continuing
from the safeguard measures, we also adjust the reading speed based on the complexity of each text
chunk mentioned in Section For more complex chunks (identified by a complexity score above
0.77), the final WPM adjustment is decreased, and conversely, it is increased for simpler chunks (with
a complexity score below 0.7). This dynamic adjustment helps tailor the reading challenge to the
content’s difficulty, ensuring that the pacing is always suited to the material’s demands. Additionally,
the starting WPM for each reading session is informed by the average of the last ten WPM values
recorded for the user in this mode, enabling a more personalised and responsive reading experience
that adapts to both user performance and text complexity.

3.1.5 Limitations

While our refined approach holds promise, several inherent limitations could impact its effectiveness.
User compliance is critical, as the system’s accuracy depends on users returning their gaze to the left
after reading—a key indicator for determining reading pace. Additionally, despite measures to reduce
its impact, blinking can still compromise accuracy, especially if it occurs during the critical last segment
of display time we analyse. Variabilities in calibration quality and user behaviour, such as inconsistent
adherence to instructions or confusion, can also introduce erratic data that may mistakenly trigger
increases in WPM. These factors underscore the complexity of reliably integrating eye-tracking in
reading applications and highlight the importance of robust user training and calibration processes.

3.2 LLM-Based Implementation
3.2.1 Quiz Generation

To generate multiple-choice questions (MCQs), several open-sourced LLMs were explored, considering
the base architecture, abstractive vs. extractive generation, and the use of multiple models. Ultimately,
two unique strategies were developed for comparison: a single extractive model that uses cosine
similarity to generate false options, and an abstractive model that uses another LLM to generate false
options. While both methods utilise an LLM to generate question-answer (QA) pairs, differences stem
from the nature of the questions themselves, as well as how false options are generated.

Extractive Pipeline: For extractive quiz generation, two fine-tuned models were analysed: T5-
large [20] and BART-large [21]. Both models are trained on the Stanford Question Answering Dataset
(SQuAD) [22], a crowdsourced set of QA pairs derived from Wikipedia articles. Through qualitative

Adaptive Speed Reading April 29th, 2024

testing on hand-crafted texts of 500-1000 words, the T'5 model was observed to be more reliable,
making fewer mistakes while producing more varied questions. This is likely due to its larger size,
having 770 million parameters versus 406 million. Despite its size, inference speeds for both models
were comparable and thus T5 was chosen.

However, several issues had to be addressed, including the repeated generation of similar questions
and model’s tokeniser having a maximum limit of 512 tokens. To solve this, texts are split into five
sections, ensuring question diversity with each section generating a QA pair. Furthermore, using a
single LLM meant only QA pairs could be extracted. Hence, the cosine similarity between word em-
beddings was used to find potential false options for an MCQ format. While the WordNet vocabulary
is used, embeddings are derived from the BERT-based-uncased model [23]. Following this procedure,
numerous exceptions needed to be handled to generate false options properly up to the trigram level,
including dates, numbers, determiners, repeated root words, and more. A full description of our rules
to handle these exceptions can be found in Appendix [E] Table

Abstractive Pipeline: The abstractive approach utilised two LLMs: one for QA generation and
another for false options. Trained on the ReAding Comprehension dataset from Examinations (RACE)
[24] for English language learners, these T5-large-based models were developed as a set specifically for
MCQ generation. While QA pairs are generated similarly, the false options are found by considering
each QA pair as well as the entire text. In this way, the nature of questions is more representative
of general understanding, testing overarching concepts instead of extracted facts. Ultimately, the
abstractive pipeline was chosen for its higher accuracy and quality, developing QA pairs at a reduced
error rate while testing overall comprehension. A full analysis can be found in Appendix [E| Table

While capable of producing high-quality MCQs, the chosen pipeline still has a high error rate of
approximately 50%), having issues such as irrelevant questions and multiple correct answers. Although
the quality of the Al-generated quizzes may not as high as human-generated ones, this approach offers
flexibility by allowing users to upload a text of their choice while effectively providing an indicator
of the user’s level of comprehension. Furthermore, platform-provided texts can easily utilise this
pipeline, only requiring human-guided approval as the final step. This is the strategy used for defining
platform-provided reading samples in the final user trials.

3.2.2 Chunk Complexity

To improve FlashMode Adaptive, the complexity of chunks is considered, reducing reading speed if
complexity is high and vice versa. Complexity scores are calculated at the sum of two sub-scores:
an LLM-derived term C that considers contextual meaning, and a deterministic term that considers
each chunk’s longest word LW. While both sub-scores are imperfect, their combined score provides
a holistic and balanced evaluation while reducing the impact of random error. Although both are
bounded within the range of 0 to 1, empirical analysis shows that the total score distribution is
heavily centred in the range of 0.60 to 0.75. As such, FlashMode Adaptive focuses on scores within
this range, as mentioned in Section The final equation for Chunk Complexity is defined as:

Chunk Complexity = C 4+ 0.02(LW) (1)

Contextual Complexity: Our fine-tuned complexity LLM is derived from public submissions to
Task 1 of the SemEval-2021 competition 25|, predicting the lexical complexity of target phrases that
are encompassed within a context sentence. While multiple submissions were analysed, this project’s
training pipeline builds upon a specific repository from Team CS60075-Team-2-Task-1 [26] for its
replicable results within our resource constraints. After fine-tuning on the competition dataset, an
optimal BERT-based model was developed, capable of scoring complexity from 0 to 1. On the pre-
segregated test set (in-domain testing), the model performed well, having an MSE error of 0.00927.
To adapt the model to evaluating specific chunks, different sections of the text were considered as
the context and target phrases. These methods are shown in Table [IL Note that Method 2 predicts
complexity scores for both halves of the current chunk before using an average to get a final prediction.

Adaptive Speed Reading April 29th, 2024

Method Context Target
1 Current chunk Current chunk
2 Current chunk Half of current chunk
3 Previous, current and subsequent chunks Current chunk

Table 1: Methods for contextual complexity inference

As this adaptation is specific to our downstream task, evaluation was done qualitatively by testing
each method on handcrafted texts, ensuring more complex chunks were assigned higher scores and
vice versa. Ultimately, all three methods produced similar results, having moderate accuracy with
some mistakes. As such, Method 1 was chosen for its simplicity and faster inference speeds.

Longest-Word Complexity: However, this sub-optimal performance led to the incorporation of
the second sub-score, based on the longest word (LW) in each chunk, to act as a simple and de-
terministic way to calculate complexity. This is based on the reasoning that longer words are more
complicated and therefore require more time to read. While the average word length was initially
considered, it was qualitatively observed that it was usually the case of a single long word that caused
complexity. Therefore, the longest word was considered directly.

Initially, a modified sigmoid function was explored to bind the range between 0 and 1. However,
its non-linear properties resulted in minor differences between very long words and large differences in
medium-length words of lesser importance. Hence, a linear function through the origin was proposed
to treat all marginal differences in word length equally. Ultimately, a linear coefficient of 0.02 was
chosen to give a maximum score of 1 for 50-character words (maximum size of the chunk window).

3.2.3 Summary Generation

Before fine-tuning an LLM, several pre-trained encoder-decoder models were evaluated whose base
architectures included Longformer Encoder-Decoder (LED) [27], BigBirdPegasus [28], and Long T5
[29]. As reading fiction is usually done for leisure, it is unlikely that users would like to learn how
to speed read using these texts. Instead, it is apt to assume that non-fiction and information-heavy
texts are more relevant for speed reading. As such, the fine-tuning process included scientific papers
from arXiv as the training corpus, representative of the most challenging and complex texts that users
could upload. However, the Long T5 model did not have a publicly available arVix-trained variant,
so an eLife-trained variant was used.

Each model was tested on articles that were less than 1000 words, with model variants having a
maximum context window of 16384 tokens, which was easily achievable. Using metrics like BLEU
and ROGUE, it was determined that the LED model is superior, outperforming the other models in
all metrics (Appendix [E| Figure . However, it was also observed that generated summaries often
contained irrelevant information, being far from an ideal summarisation model for our platform.

Given that the LED model uses only 41 million parameters, the Llama-7b base model [30] was
chosen for fine-tuning experimentation due to its significantly larger number of parameters (7 billion),
and its popularity in summarisation tasks. For fine-tuning, an Nvidia Tesla A30 GPU was used, being
the only GPU consistently provided by Imperial’s GPU clusters. While it holds 24 GB of RAM, it is
divided into two 12 GB instances, meaning that only 12 GB could be utilised for fine-tuning.

Without using any Parameter-Efficient Fine-Tuning (PEFT) methods, and by using 32-bit floating-
point precision, this setup would require 28 GB for inference. Additionally, during the training stage,
the memory requirements for model parameters, estimating gradients, the optimiser, and activations
for backward propagation—assuming a batch size of one—would amount to approximately 28 + 28 +
56 + 18 = 130 GB. To reduce these size requirements and proceed with the process, we utilised the
Quantised Low-Rank Adaptation (QLoRA) technique. Specifically, both 4-bit quantisation and double
quantisation were employed, thereby reducing the model weights from the typical 32-bit floating-point
precision to 4-bit. Consequently, the memory required for storing the model’s parameters was reduced
by a factor of 8, leading to a required size of roughly 4 GB for inference. Moreover, for LoRA, we

10

Adaptive Speed Reading April 29th, 2024

used a matrix rank of 2 for the updated matrices. In our case, this approach entails updating only
5 million parameters (0.14%) during training, a significant reduction from the initially targeted 3.5
billion parameters, thereby reducing the required memory size during fine-tuning and allowing the
process to run smoothly.

Despite making the fine-tuning process more time- and memory-efficient, the performance im-
provements for our summarisation task were minimal. Although the model was trained for 7 hours on
a dataset of 4038 1000-word texts for 2 epochs, the performance was nearly identical to those of the
pre-trained model. This modest progress was anticipated since we deliberately used low parameters,
including a matrix rank of 2 and a batch size of 1, to meet our computational limits, which limited
the effectiveness of the fine-tuning.

After three weeks of experimenting with smaller-sized pre-trained LLMs like T5-3b to balance
efficiency and effectiveness in fine-tuning, we decided to exclude text summarisation from our website
due to underwhelming results. Although a desirable feature, further investment in this area seemed
unjustifiable given its limited potential value. Users can achieve high-quality summaries using other
LLM-based platforms and then import them to our site, maintaining the site’s primary functionality
without compromising its objectives.

4 User Trials

During the development process, user trials were conducted to gather real feedback and iteratively
improve the platform. Each trial tested a progressively more advanced version of the website. A brief
description of the website version and the trial’s specific objectives can be found in Table

Trial Platform Features Specific Objectives

- DocMode (Pointer Highlighting, HyperBold) | - Act as a non-Al version baseline

1 - Static FlashMode - Gather user insights on Doc/FlashMode
- No Quizzes - DocMode vs FlashMode reading speed
- FlashMode (Adaptive) - Gather user insights to FlashMode

2 - Human-Generated Quizzes - Analyse if FlashMode is challenging users
- User/Admin Analytics Page - Observe speed vs comprehension trade-off
- DocMode (Toggle Options) - Gather insights for Chunk Complexity

3 - Dynamic FlashMode (Chunk Complexity) - Observe new reading speed variance
- AI-Generated Quizzes (Human Approved) - Gather insights on Al-generated quizzes
- Self-Upload Text (beta) - Gather insights on Self-Upload Texts

Table 2: Detail and objectives of all user trials

4.1 Ethics and Privacy

To ensure the privacy and security of user data following the seven principles of the General Data
Protection Regulation (GDPR) and Data Protection Act 2018 (DPA18), multiple measures are imple-
mented. First, a” Terms and Conditions” agreement is shown to users within the log-in and self-upload
pages, detailing how their personal data will be used under GDPR’s principles of lawfulness, fairness,
and transparency as well as their rights to access, correct, and delete their information. Second, before
the WebGazer calibration stage, a pop-up message is displayed indicating how Kiraka uses video data,
assuring them that no video content is saved, only the coordinates of their gaze and timestamps.

4.2 'Trial Set-Up

All trials lasted two days each, with participants reading up to five provided texts in any order, and at
any time. Users were also asked to give feedback via a Google form, shown in Figure [14]in Appendix
that covered specific features and general user experience. Participant demographics primarily
include university students from various academic backgrounds as well as professionals from various

11

Adaptive Speed Reading April 29th, 2024

industries. However, all participants are fluent in English so the Chunk Complexity and automatic
quiz generation features could be tested, being features that utilise LLMs that were fine-tuned on
English datasets.

As fiction texts are normally read for leisure and therefore do not require speed reading, the
provided texts were more information-focused. While public domain texts were explored, several
issues were encountered. Generally, copyright law states that texts that are 70 years past the author’s
death are free to use, meaning available texts are mostly old novels. Searching for excerpts that
aligned with modern English and an information focus proved difficult, making for sub-optimal reading
examples. Instead, texts were generated via ChatGPT4 to ensure no copyright issues while allowing for
modifications through careful prompt engineering. The topics of provided texts were obscure enough
to provide challenging quizzes, but also simple enough to understand on a first read.

As detailed in Table [2| the method for generating MCQ quizzes changed from trial to trial, im-
proving until a reliable pipeline was developed. In the first trial, no quizzes were provided. In the
second trial, ChatGPT4-generated quizzes were manually edited to ensure accuracy and adequate
complexity, also acting as the gold standard for quiz generation. In the final trial, Kiraka’s quiz gen-
eration pipeline with human approval was used, testing whether it is capable of generating quizzes of
comparable quality.

4.3 Results and Outcomes
4.3.1 User Trials 1

User feedback regarding DocMode and FlashMode was as expected, with most users saying that while
DocMode is more familiar, FlashMode can sharpen reading focus by removing the ability to re-read.
However, recorded metrics also showed that users rarely adjusted the reading pace between texts,
showing that they were not challenging themselves to improve their reading speed. For DocMode,
there were mixed reviews for the karaoke-style pointer feature, with some saying it was useful and
others saying it was unnecessary and unhelpful.

4.3.2 User Trials 2

In general, user experience was reportedly high as 74% of participants approved of the website design
and 82% said that they would recommend this platform to a friend. Specific feedback regarding key
platform features is discussed below.

FlashMode Adaptive received mostly positive reviews, with 83% of users saying that their eyes
were properly tracked, and the adjusted reading speeds challenged them to read faster. This initial
feedback is supported by a macro-analysis of recorded WPMs and quiz scores, showing no significant
decrease in comprehension when reading speed increases (Figure |3). However, common issues included
the tendency to re-read chunks and falsely signal that users were finished reading, inaccuracy during
blinking, and difficulties for users with glasses.

Feedback on the quizzes was also positive, with users saying that seeing their performance analytics
motivated them to improve and 74% of participants rated quiz effectiveness at least a 4 out of 5.
However, 65% of users also claimed that speed reading negatively impacted their understanding of the
text, primarily due to reading speeds sometimes becoming too high. This is what Chunk Complexity
aims to solve, reducing reading speed when necessary to ensure important information is properly
digested. Users also suggested including more obscure topics as some questions could be answered
using prior knowledge.

4.3.3 User Trials 3

Overall, 89% of users rated their experience positively, marking a 20% improvement. The platform
also reported user approval ratings of 78% and 80% for website layout and website design respectively.
For improved reading modes, reviews were mixed. For FlashMode, 54% of participants said that
Chunk Complexity was an improvement and all participants agreed that it challenges them to read

12

Adaptive Speed Reading April 29th, 2024

o — Trial 2
° —— Trial 3
6001 ® ° 390 4
H
° H
. o s 380 -
500 4 °
[} ° g
° =
g $ M > 370
=] [] =
400 (3 l 8
— < 360 A
« o+ —4—°¢]
3001 @ [] ° ' [350 4
.
. § :
°
s s
200 4 (] . 340

2

0.0 0.2 0.4 0.6 0. 1.0 0 1 2 3 4
Quiz results Number of texts previously read

(a) Quiz results vs WPM, a quantitative measure of the (b) Quantified learning curve using the average WPM
speed-comprehension trade-off of user as they continue to train on the Kiraka platform

Figure 3: Quantitative analysis of user trials results

faster. However, critiques regarding eye-tracking accuracy and false signalling persisted, likely due to
deeper issues involving the WebGazer API.

In this trial, DocMode became much less popular than FlashMode, having only 5 recorded sessions
in comparison to FlashMode’s 48, suggesting that DocMode is an inherently less attractive feature.
While 77% of participants agreed it is more useful than normal reading, there are repeated critiques
that its non-adaptive pointer system made for a ”"robotic” reading experience with an over-emphasis
on individual words.

As in the previous trial, recorded reading speeds and quiz results showed no correlation (Figure (3)),
signalling that users have been challenged to read faster without sacrificing comprehension. Analysis
of participants’ reading speeds over multiple sessions shows a steady increase in WPM after an initial
decrease, as seen in Figure (3| This learning curve is likely due to users becoming more confident with
the Kiraka platform after overcoming the initial unfamiliarity of Flashmode.

Human-approved quizzes received positive feedback, with 67% of users stating they found them
sufficiently challenging. Furthermore, 80% found these quizzes to be more effective than the hand-
crafted ones, showing a higher affinity for abstractive-based questions. However, this abstractive style
also led to repeated comments about answer subjectivity, listing multiple options that are technically
valid. These criticisms are more prevalent in the Al-generated quizzes from self-uploaded text, not
being able to benefit from a human filter.

5 Evaluation

5.1 Software Engineering

To evaluate the Kiraka platform’s performance and software engineering practices, Google Lighthouse
[31] was used, a popular benchmarking tool for websites. As shown in Figure [15|in Appendix results
were excellent, with a performance score of 99/100, an accessibility score of 94/100 and a perfect score
of 100 for Search Engine Optimisation (SEO). However, one area of improvement was ”best practices,”
having a score of 78/100, due to the website’s use of third-party cookies from Clerk as shown in Figure
in Appendix|[G] but we chose to keep using Clerk since it offers many security benefits. As browsers
like Google Chrome are moving towards not supporting third-party cookies, this presents a challenge,
requiring us to balance Clerk’s security benefits with evolving web privacy standards.

WRK?2 [32] was also used to simulate user load on the website under worst-case scenarios, specif-
ically when a large number of users access the site simultaneously. This stress test is designed to
evaluate our website’s scalability by varying the number of connected users from 5 to 50. In stress
testing, we assumed a conservative five-second interval per user request. Given that WebGazer track-
ing and reading modes operate client-side, this actually provides an overestimate of server demand.

13

Adaptive Speed Reading April 29th, 2024

As illustrated in Figure[17]in Appendix[G] latency becomes significant when the user count exceeds 20
(approx. four requests per second), with mean latency remaining under 200ms (and 99.99% percentile
latency only being slightly above 200) for up to 10 users but rising sharply beyond that point. This
indicates acceptable performance for a limited number of users but potential scalability issues. During
tests, uneven CPU load distribution across four cores were discovered during peak demand, as evi-
denced in Figure [1§]in Appendix [G] To address this, we plan to implement multiple server instances
and a load balancer to more evenly distribute the workload and increase our capacity for simultaneous
connections.

The back end can perform reliably and securely. The VM is configured to automatically launch
the website when booted, increasing the reliability of the software, and requests always require the
Clerk ID of the user, adding a layer of security. On the other hand, the long execution time of the quiz
generation can cause a socket connection timeout in the request when uploading a text. While the
request is still handled properly, a response is never sent to the front end. Additionally, although the
database follows most normalisation principles, it does not conform to the third normal-form, making
it vulnerable to logical errors.

5.2 DocMode

Throughout user trials, the functional performance of DocMode remained high. Meeting the technical
specification, DocMode successfully provides users with an accurate pointer that highlights words at
the WPM rate and converts texts into hyperbold style. In all trials, there were no reported operational
issues, such as lag in the transition of the pointer or unresponsiveness in manual control buttons like,
start /pause. This underlines the appropriate technical implementation of DocMode, particularly the
interface in the front end and text fetching in the back end.

The purpose of DocMode is to train users to read faster. Although this is a relatively standard
feature, user trials showed positive feedback on its ability to train users for real-life reading situations,
iteratively improving with each trial. From User Trial 1, only slightly above 50% of participants found
the DocMode to be useful for increasing reading pace. Specifically, the negative reviews mentioned the
pointer and hyperbold were sometimes distracting, making speed reading unproductive as users were
not able to turn on/off features. As such, these features became optional. Additionally, the pointer
size (the number of words that can be highlighted) and text font size also became adjustable. The
effects of the improved features can be seen in User Trial 3, having a 22% increase in participants who
found DocMode to be useful (77% total). Despite the promising comments, DocMode’s HyperBold
feature can be improved to bold syllables of the word rather than the first few characters.

5.3 FlashMode

FlashMode, the project’s centerpiece, was refined through multiple iterations, with each update en-
hancing its technical performance and user utility. Test-driven development addressed many issues
inherent to eye-tracking, such as poor calibration and pixel offsets (referred to in Section[3.1.5). When
working as intended, the feature is intuitive, only requiring users to return their gaze left when read
is finished. As mentioned in Section users who tried FlashMode generally reported a positive
experience, appreciating the forced focus and enhanced reading speed.

Beyond engineering quality, FlashMode’s utility as a speed-reading trainer is supported through
qualitative and quantitative analysis. Feedback confirms that users like FlashMode, having a 67%
approval rating overall, and all users agreed that they were pushed to read faster. As seen in Figure
FlashMode’s auto-provided speeds also did not result in any reductions in quiz performance, showing
that users were adequately challenged without surpassing the speed-comprehension trade-off. The
learning curve seen in Figure [3b| also supports that the platform is intuitive, with performance quickly
increasing within a few reading sessions. As indicated in Section FlashMode has proven more
beneficial than DocMode, as evidenced by more favourable written reviews and greater popularity.

However, FlashMode does have some drawbacks. Users report occasional inaccuracies such as
inconsistent eye-tracking exacerbated by blinking, sometimes confusing the system to increase reading
speed greatly. When provided reading speeds were very high, users also often struggled to regain

14

Adaptive Speed Reading April 29th, 2024

control, which caused further acceleration and disruption of the reading flow. Furthermore, the reduced
duration of user trials does not allow for a proper assessment of FlashMode’s long-term effectiveness
in improving reading speed. While the engineering quality and user experience can be analysed, a
longer, scientific study is required to assess its actual utility as a speed-reading trainer.

5.4 Quiz Generation

While only tested in the final user trial, Kiraka’s pipeline performed well, having 80% of users agree-
ing that the Al-generated quizzes were of similar or greater quality in comparison to the standard,
hand-crafted quizzes. Questions are also generated with minimal latency, creating new questions ap-
proximately every two seconds. Given its abstraction-based question format, user feedback has been
positive, indicating that the Al-generated quizzes test general understanding in comparison to extrac-
tive questions that test small details. The human approval system ensures a quality check, with the
AT’s output generally aligning with user preferences.

Despite these advantages, the current pipeline does have its limitations. Without human approval,
quiz quality becomes inconsistent, with useable questions only being generated about 50% of the time.
Incorrect answers and false options are often observed, thus requiring extensive fine-tuning or a so-
phisticated but automated validation process in the future. Additionally, the current question format
might be too abstractive, occasionally resulting in simple questions, such as asking for title recommen-
dations, without exploring deeper comprehension. The reliance on two large LLMs also contributes
to a high computational load, given their considerable size (2.8 GB each). Another constraint is the
LLMs’ training on English-only texts, limiting their multilingual capabilities.

5.5 User Experience and Analytics Page

The overall user experience is intuitive and visually pleasant, with feedback reporting 78% user ap-
proval. This is thanks to research-informed decisions such as using an off-white background for reduced
eye strain and feedback-driven improvements like the instructions page. Popup boxes were also im-
plemented to guide users, providing helpful information about each feature or page’s purpose. The
user analytics page also received positive feedback, with 61% of users stating that it helped motivate
them while identifying areas of improvement. However, feedback also indicated that the popup boxes
were often too long and generic, with some covering the entire page. In the future, smaller, localised
popups should be used, allowing users to digest information in segments without overwhelming them.

6 Conclusion and Future Work

In conclusion, our project has successfully addressed key limitations in speed-reading platforms through
Kiraka’s user-centric adaptivity and training focus. Through the digitisation of established techniques,
DocMode provides a familiar and traditional approach to speed reading, supported by 78% of trial
users. Even so, FlashMode proved to be more popular during user trials, evidencing the utility of
FlashMode’s innovative approach. Aligned with our original objective of maintaining reading compre-
hension, FlashMode successfully challenges readers without exceeding their limits, with users showing
no decrease in quiz performance at higher reading speeds. The quality Al-generated quizzes them-
selves was also rated highly, ensuring that reading comprehension was accurately measured. However,
the current pipeline still requires human approval, keeping the self-upload feature in beta development
until its consistency can be improved.

In future work, we aim to streamline the quiz generation pipeline by eliminating the need for
human approval. This could be achieved either by replacing human oversight with an LLM or by
fine-tuning a larger pre-trained model, which may potentially demonstrate enhanced performance in
our downstream task. Additionally, inspired by [33], we plan to improve the chunking techniques used
in FlashMode through the integration of a fine-tuned LLM. This model will identify optimal moments
in the text for inserting pauses, thereby guiding FlashMode on where to reduce reading speed.

15

Adaptive Speed Reading April 29th, 2024

References

1]

[10]

[11]

K. Rayner, E. R. Schotter, M. E. Masson, M. C. Potter, and R. Treiman, “So much to read, so
little time: How do we read, and can speed reading help?” Psychological Science in the Public
Interest, vol. 17, no. 1, pp. 4-34, 2016.

R. Spence, “Rapid, serial and visual: A presentation technique with potential,”
Information Visualization, vol. 1, mno. 1, pp. 13-19, 2002. [Online]. Available: https:
//doi.org/10.1057 /palgrave.ivs.9500008

M. Migoli, G. Oquist, and S. Bjork, “Evaluating sonified rapid serial visual presentation: An
immersive reading experience on a mobile device,” vol. 2615, 10 2002, pp. 508-523.

S. Benedetto, A. Carbone, M. Pedrotti, K. Le Fevre, L. A. Y. Bey, and T. Baccino, “Rapid
serial visual presentation in reading: The case of spritz,” Computers in Human Behavior,
vol. 45, pp. 352-358, 2015. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0747563214007663

H. Nishida, “The influence of chunking on reading comprehension: Investigating the acquisition
of chunking skill,” The Journal of Asia TEFL, vol. 10, pp. 163-183, 2013. [Online]. Available:
https://www.researchgate.net/publication /289208481

B. H. I. Kana’an, S. D. A. Rab, and A. Siddiqui, “The effect of expansion of
vision span on reading speed: A case study of EFL major students at King Khalid
University,” English Language Teaching, vol. 7, p. pb57, 9 2014. [Online]. Available:
https://ccsenet.org/journal /index.php/elt /article /view /40553

Spreeder, “Spreeder - speed reading app & software.” [Online]. Available: https:
/ /www.spreeder.com/

SwiftRead, “Swiftread - speed reading software.” [Online]. Available: https://swiftread.com/

A. Papoutsaki, P. Sangkloy, J. Laskey, N. Daskalova, J. Huang, and J. Hays, “Webgazer: Scalable
webcam eye tracking using user interactions,” in Proceedings of the 25th International Joint
Conference on Artificial Intelligence (IJCAI). AAAI 2016, pp. 3839-3845.

Doing ADHD, “Bionic reading: Game-changer for adhd readers,” 2023, ac-
cessed: 2024-04-29. [Online|. Available: https://doingadhd.com/2023/technology/reading/
bionic-reading-game-changer-for-adhd-readers/

K. Schwaber and J. Sutherland, “The scrum guide: The definitive guide to scrum:
The rules of the game,” 2020, accessed: 2024-04-29. [Online]. Available: https:
/ /scrumguides.org /scrum-guide.html

Notion, “Your connected workspace for wiki, docs projects — notion.” [Online]. Available:
https://www.notion.so/

M. Teams, “Video conferencing, meetings, calling — microsoft teams.” [Online]. Available:
https:/ /www.microsoft.com /en-gb /microsoft-teams/group-chat-software

Vercel, “Next.js by vercel - the react framework.” [Online|. Available: https://nextjs.org/

M. Calligeros, “Seeing green boosts your concentration, research
shows,” 5 2015. [Online]. Available: https://www.smh.com.au/technology/
seeing-green-boosts-your-concentration-research-shows-20150525-gh8udh.html

L. Rello and J. P. Bigham, “Good background colors for readers: A study of people with and
without dyslexia,” in Proceedings of the 19th International ACM SIGACCESS Conference on
Computers and Accessibility, ser. ASSETS '17. New York, NY, USA: Association for Computing
Machinery, 2017, p. 72-80. [Online|. Available: https://doi.org/10.1145/3132525.3132546

16

https://doi.org/10.1057/palgrave.ivs.9500008
https://doi.org/10.1057/palgrave.ivs.9500008
https://www.sciencedirect.com/science/article/pii/S0747563214007663
https://www.sciencedirect.com/science/article/pii/S0747563214007663
https://www.researchgate.net/publication/289208481
https://ccsenet.org/journal/index.php/elt/article/view/40553
https://www.spreeder.com/
https://www.spreeder.com/
https://swiftread.com/
https://doingadhd.com/2023/technology/reading/bionic-reading-game-changer-for-adhd-readers/
https://doingadhd.com/2023/technology/reading/bionic-reading-game-changer-for-adhd-readers/
https://scrumguides.org/scrum-guide.html
https://scrumguides.org/scrum-guide.html
https://www.notion.so/
https://www.microsoft.com/en-gb/microsoft-teams/group-chat-software
https://nextjs.org/
https://www.smh.com.au/technology/seeing-green-boosts-your-concentration-research-shows-20150525-gh8udh.html
https://www.smh.com.au/technology/seeing-green-boosts-your-concentration-research-shows-20150525-gh8udh.html
https://doi.org/10.1145/3132525.3132546

Adaptive Speed Reading April 29th, 2024

[17]

[22]

D. Scotland, “Contrasting advice — what colours are best for accessibility? — dyslexia
scotland - dyslexia scotland,” 7 2023. [Online]. Available: https://dyslexiascotland.org.uk/
contrasting-advice-what-colours-are-best-for-accessibility /

Clerk, “Clerk — authentication and user management.” [Online]. Available: https://clerk.com/

Y. Hisao, “A historical study of typewriters and typing methods: from the position of planning
japanese parallels,” Journal of Information Processing, vol. 2, no. 4, pp. 175-202, 02 1980.
[Online]. Available: https://cir.nii.ac.jp/crid/1050001337894287488

P. Manakul, A. Liusie, and M. J. Gales, “Mqag: Multiple-choice question answering and gener-
ation for assessing information consistency in summarization,” arXiv preprint arXiv:2301.12307,
2023.

A. Ushio, F. Alva-Manchego, and J. Camacho-Collados, “Generative Language Models for
Paragraph-Level Question Generation,” in Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing. Abu Dhabi, U.A.E.: Association for Computational
Linguistics, Dec. 2022.

P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “SQuAD: 100,000+ questions for
machine comprehension of text,” in Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, J. Su, K. Duh, and X. Carreras, Eds. Austin, Texas:
Association for Computational Linguistics, Nov. 2016, pp. 2383-2392. [Online]. Available:
https://aclanthology.org/D16-1264

J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep bidirectional
transformers for language understanding,” CoRR, vol. abs/1810.04805, 2018. [Online]. Available:
http://arxiv.org/abs/1810.04805

G. Lai, Q. Xie, H. Liu, Y. Yang, and E. Hovy, “RACE: Large-scale ReAding comprehension
dataset from examinations,” in Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing. Copenhagen, Denmark: Association for Computational
Linguistics, Sep. 2017, pp. 785-794. [Online]. Available: https://aclanthology.org/D17-1082

M. Shardlow, R. Evans, G. H. Paetzold, and M. Zampieri, “Semeval-2021 task 1: Lexical com-
plexity prediction,” pp. 1-16.

A. Nandy, S. Adak, T. Halder, and S. M. Pokala, “cs60075_team2 at SemEval-2021 task 1 :
Lexical complexity prediction using transformer-based language models pre-trained on various
text corpora,” in Proceedings of the 15th International Workshop on Semantic FEvaluation
(SemFEwval-2021). Online: Association for Computational Linguistics, Aug. 2021, pp. 678-682.
[Online|. Available: https://aclanthology.org/2021.semeval-1.87

I. Beltagy, M. E. Peters, and A. Cohan, “Longformer: The long-document transformer,”
arXiv:2004.05150, 2020.

M. Zaheer, G. Guruganesh, A. Dubey, J. Ainslie, C. Alberti, S. Ontanon, P. Pham, A. Ravula,
Q. Wang, L. Yang, and A. Ahmed, “Big bird: Transformers for longer sequences,” 2021.

M. Guo, J. Ainslie, D. Uthus, S. Ontanon, J. Ni, Y.-H. Sung, and Y. Yang, “Longt5: Efficient
text-to-text transformer for long sequences,” arXiv preprint arXiv:2112.07916, 2021.

H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu,
J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini,
R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura, M.-A.
Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra,
I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten, R. Silva, E. M.

17

https://dyslexiascotland.org.uk/contrasting-advice-what-colours-are-best-for-accessibility/
https://dyslexiascotland.org.uk/contrasting-advice-what-colours-are-best-for-accessibility/
https://clerk.com/
https://cir.nii.ac.jp/crid/1050001337894287488
https://aclanthology.org/D16-1264
http://arxiv.org/abs/1810.04805
https://aclanthology.org/D17-1082
https://aclanthology.org/2021.semeval-1.87

Adaptive Speed Reading April 29th, 2024

Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan,
I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov, and
T. Scialom, “Llama 2: Open foundation and fine-tuned chat models,” 2023.

[31] Google, “Lighthouse: An open-source, automated tool for improving the quality of web pages,”
Software available from Google Lighthouse web page, 2024.

[32] G. Tene, “wrk2: A constant throughput, correct latency recording variant of wrk,” 2023,
[Online; accessed 28-April-2024]. [Online]. Available: https://github.com/giltene /wrk2

[33] J. Busler and A. Lazarte, “Reading time allocation strategies and working memory using rapid se-
rial visual presentation,” Journal of Experimental Psychology: Learning, Memory, and Cognition,
vol. 43, no. 9, pp. 1375-1386, 2017.

18

https://github.com/giltene/wrk2

Adaptive Speed Reading April 29th, 2024

Appendices

A Diagram overview of the Website

KIRAKA.AT
About Pricing Contact e o
4 & Form
) c’!‘«) | Click * Terme & *
(anding » E— R ——
Cidebar Sign infup R Conditions
A
A
: !
l Flash Mode
Text £ ——
Corpus
Doc Mode Flash Mode Flash Mode 30" ¥
e .
Static Adaptive ‘) Anabytics
v \’ ATAK
Upload ° Calibration
*| Page
______________ A ¥
MariaDB 1
| A Qi Quiz Seore
uiz ol
Text copies & 1 *
matching quizzes| |
|
|
Navbar A——— 3 o Redirects
Modes Uces WebGazer APT Makes backend » Flow of average WPM
] Sidebar requests Flow of WPM value per chunk
Sidebar " withoot text

> Flow of quiz score
carfuf

Figure 4: Diagram overview of the website, showing all the pages and connections

19

Adaptive Speed Reading

April 29th, 2024

B Entity Relationship Diagram of the database

Color scale:
PrimaryKey
ForeignKey

PrimaryKey Constraints

GazerPoints

PointID
ChunkID
PointPosition
Xvalue
Yvalue
ElapsedTime

INT
INT
INT

FLOAT
FLOAT
FLOAT

Figure 5: Entity Relationship Diagram of the database

C Project Management

[0 By status EB By assignee

#® Not started

Average Position of Webgazer in
Each Time Step

1 Jack Hau

Find the Time it should take to
read the sub-setence

1 Jack Hau

Refactor FrontEnd Code

F Fadi

Create Adaptive Al Function

F Fad Jack Hau

® In progress 4

FineTune Custom Models

Kyoya Konstantinos

Evaluate All Models (Final Model
Selection)

Kyoya Konstantinos

Connect Adaptive Metrics to
Database

F Fad Jack Hau

Mode 1 Improvements

F Fad Jack Hau

E Evangelos

E Evangelos

E Evangelos

® Done 7

README for backend

Matis

Exposing Backend on VM

Matis E Evangelos

Upload text function

Matis

Generate Quiz with Uploaded
Text

Kyoya E Konstantinos

Matis

Evangelos

Keeping track of who is logged in
(ID numbers)

Matis

Admin Analytics Page

Matis E Evangelos

User Analytics Page

I Matis

Figure 6: Example of our Notion sprint board for one particular sprint

20

| ChunkComplexity |
ComplexitylD INT |Texts | |Questions
TextID INT -
ChunkPosition INT TextID INT QuestionlD INT
Complexity INT UserlD INT T TextID. INT
ChunkContent TEXT TgxtContent TEXT i QuegtlonCoptent TEXT
Title TEXT MultipleChoices TEXT
— Deleted BOOL CorrectAnswer TEXT
| Users
UserlD INT i
Admin BOOL | PracticeResults | |QuizResults
PracticelD INT L4 ResultlD INT
- TextID INT PracticelD INT
Chunks UserlD INT | 4 QuestionID INT
ChunkiD INT WPM INT Answer TEXT
. Timestamp DATE Score INT
u | PracticelD INT Mode INT
" | ChunkPosition INT

Adaptive Speed Reading

April 29th, 2024

D WebGazer Related Information

-10 +10 |Scores
L In t8day’s fast-paced world, striking [a healthy work-life] 0
» In today’s fast-paced world, striking ja healthy work-life 0
é- n today’s fast-paced world, striking ja healthy work-lif 0
ug; In today’s fastepaced world, striking ja healthy work-lif 0
7 10 n Mf:, fast-paced worféstriking a healthi \gork-life 10 +5
E n today’s fast-paded werld, striking a healthy work-life:] 0
" n today’s fast-paded worldpstriking la healthy work-life 0
é- n today’s fast-pa world, striking a healthy work-life 0
E E n today’s fast-pa world, striking adealthy work-lifej +5
73 A OE n tod_aﬂ_s’ fast-paded worl:,u striking @ heaﬂh‘{ t\i’vork-li\‘ejﬁ1 0 +5
E n today’s fast-paded world, striking @ healthy work-I 0
» n today’s fast-paded world, striking @ healthy work-li 0
é- n today’s fast-paded world, striking a healthy work: 0
g n today’s fast-paded world, striking @ healthy work-life © +10
n today’s fast-paded world, striking @ healthy work-life +10
1/3 -10 -5 -5 « +0 iﬁ
/ +35/15
v
time Red zones Main reference zone Gaze point
axis

Figure 7: The scoring system for each of the 5 separated sections to determine WPM adjustment at
each time step.

1600

1400

1200

1000

Gaze X position [px]

400

Gaze X Position and X Speed vs. Time for chunk_3 (Blinking Setting)

Gaze Y Position and Y Speed vs. Time for chunk_3 (Blinking Setting)

—e— X Position
o~ X Speed

800 { = YPosition
—e— YSpeed

Gaze Y Position [px]

N

556,
33

29200

(a) Gaze X Position and X Speed vs Time

29400

29800 30000

Time [ms]

29600 30200

30400

30600 0800 29200 29400

Gaze Trajectory (X.Y) for chunk_3 (Blinking Setting)
e

29600

29800 30000

Time [ms]

Gaze Y Position [px]

—e— Trajectory (X.Y)

1000 1200 1400
Gaze X Position [px]

(¢) Gaze Trajectory

1600

Figure 8: Chunk 3 of a text for Blinking Setting

21

30200

30400

30600

(b) Gaze Y Position and Y Speed vs Time

30800

Gaze Y Speed [px/ms]

Adaptive Speed Reading April 29th, 2024

Gaze Y Speed [px/ms]

Gaze X Position and X Speed vs. Time for chunk_6 (Normal Setting) Gaze Y Position and Y Speed vs. Time for chunk_6 (Normal Setting)
1800 800 ,
—e— X Position —e— Y Position PR N oo,
X Speed == "Vipeed
1600
700 N
1400
s 2 600
5 1200 5 0
& &
X s
% 1000 i
8 8 500 N
800 13
400 I
600
45600 45800 45000 46200 46400 46600 46800 47000 45600 45800 46000 46200 46400 46600 46800 47000

Time [ms] Time [ms]

(a) Gaze X Position and X Speed vs Time (b) Gaze Y Position and Y Speed vs Time

Gaze Trajectory (X.Y) for chunk_6 (Normal Setting)

§
m 226270 a 2313333 e Tajectory X1

Gaze Y Position [px]

600 800 1000 1200 1400 1600 1800
Gaze X Position [px]

(¢) Gaze Trajectory

Figure 9: Chunk 6 of a text for Normal Setting

Gaze X Position and X Speed vs. Time for chunk_22 (Normal Setting) Gaze Y Position and Y Speed vs. Time for chunk_22 (Normal Setting)

1600 —e— X Position ¥ Position
X Speed 200 1.60_

800
< 1200
H < 70 N
&£ 1000 %
x < 700
8 S

8

550 Vi 3

ssden ssdeo oo T E oo oo
Time [ms]

(a) Gaze X Position and X Speed vs Time (b) Gaze Y Position and Y Speed vs Time

Gaze Trajectory (X.Y) for chunk_22 (Normal Setting)

400

—e— Trajectory (X,Y) 4 0 7 36

200

800

Gaze Y Position [px]
E

650

600

400 600 800 1200 1400 1600

1000
Gaze X Position [px]

(¢) Gaze Trajectory

Figure 10: Chunk 22 of a text for Normal Setting

22

Gaze Y Speed [px/ms]

Adaptive Speed Reading

April 29th, 2024

Gaze Data Detailed Stats Over 32 Chunks — Normal Setting

Metric Average Std Dev Min Max

X Speed Range [px/ms] 10.96831778 2.545064018 4.817928024 15.24240624
X Max Speed [px/ms] 4.017154108 1.018206697 2.747542148 7.330863512|
X Min Speed [px/ms] -6.951163671 2.355782985 -11.22441148 -0.121648108
Y Speed Range [px/ms] 3.584798872 0.724179596 2.436341452 5.171738456
Y Max Speed [px/ms] 1.597760316 0.477305798 0.806178901 2.79576275)
Y Min Speed [px/ms] -1.987038556 0.588350411 -3.384093733 -0.772515744]
Metric Average Std Dev Min Max

X Position Range [px] 1260.274912 114.2973956 997.567323 1495.272231
X Max Position [px] 1711.843799 97.22191967 1424.436757 1982.419078§
X Min Position [px] 451.568887 59.99585013 363.9246482 649.3276378
Y Position Range [px] 385.2763913 91.52352564 229.2371744 578.4629805)
Y Max Position [px] 849.6258205 58.30883886 649.2993185 933.7809909
Y Min Position [px] 464.3494293 103.3137044 251.0081716 645.9376452|

Gaze Data Detailed Stats Over 32 Chunks — Blinking Setting

Metric Average Std Dev Min Max

X Speed Range [px/ms] 12.40854005 2.489288948 6.719480014 16.69336128
X Max Speed [px/ms] 5.5674787 2.036604808 2.833862222 11.16880088
X Min Speed [px/ms] -6.841061347 1.922214991 -10.55526475 -2.811368311
Y Speed Range [px/ms] 7.934225703 2.205711478 2.185520112 10.51461181
Y Max Speed [px/ms] 4.122029136 1.210788129 0.881307467 5.762081045)
Y Min Speed [px/ms] -3.812196567 1.253235891 -5.918752731 -1.048972334]
Metric Average Std Dev Min Max

X Position Range [px] 1269.658295 160.9215175 763.4582447 1547.871375)
X Max Position [px] 1595.657563 137.556454 1234.070456 1842.608588
X Min Position [px] 325.9992674 66.21074499 187.1706308 470.6122111
Y Position Range [px] 529.8317962 165.7105253 96.83656411 832.400038
Y Max Position [px] 789.0112119 77.90731412 588.2951703 921.0527633
Y Min Position [px] 259.1794157 137.0314384 50.67062495 599.1549806

Figure 11: Gaze data from WebGazer detailing the speed range, max speed, min speed, position range,
max position, and min position of X and Y direction for both normal and blinking settings.

23

Adaptive Speed Reading April 29th, 2024

Gag!e X Position and X Speed vs. Time for chun:k_1 (Normal} (Chunk1)
v. 1600 =+ X Posjtion " a
: X Speed Ignore data . Bypassed
H Bl I \ User is ahead,
i m
5 ?mo, : WPM should be
i = increased
fH 81000 i ;
Fill x L... Trigger!for-—
R 800- ' bypass'®
il S | PS5
o 600 - | 1 -
| 18 A
4004) :) . 1 % 548
68400] 68600 68800 69000 69200 169400 69600
| Time [ms] I
—_ 5

1
Gaze Return from

previous chunk

g Gaze Return to Left
for next chunk

1 | 1 1
Gaze X Ppsition and X §peed vs. Time for chunk_2 (Blinking)

1600 —— X Position 1 T I g b= (chunkz)
Xspeed | |gnore data I ! Bypassed
il 1400+ 1 1 I
i % 1 1 [1)
i@ c1200- 1 { I 1 : User is ahead,
= Q Y
il = 1 1 1 g | WPM should be
il 29 ! I/ ! increased
il 3 ' =' '
H I s i i I I
il el 1 | 1 . 1
I i ; Trigger f,olu‘
igod : ! 1 bypass.ig V.
20200 20400 ' 20600 2080b 30000 30200 30400 30600 30800
I Time [ms] I 1
| > >
Gaze Return from I Blinking 1 Gaze Return to Left
previous chunk Spike for next chunk
Gaze X Position and X Speed vs. Time for chunk_3 (Normal)
100 e X Position e (Chunk3)
p .00 ***? |gnore data '
i N
el EMUO' User is behind,
] s WPM should be
i = 1200 e :
d B) 3 decreased
3 > 1000 e ‘ s
i o . =
H 5
i © 800
i
600

45600 45800 46000 46200 46400 46600 46800 47000
Time [ms]

Figure 12: Cat-and-mouse WPM adjustment strategy

24

Adaptive Speed Reading

April 29th, 2024

E LLM

Level

Default Handling

Exceptions / Conditions

Unigram

Use cosine similarity

1. 4-digit numbers: Sample from +10
of the number itself.

2. Other numbers: Use cosine similar-
ity, ensure it’s a number.

3. Names: Ensure returned options are
capitalized.

Bigram

Use cosine similarity for the
whole bigram

1. 4-digit number in bigram: Treat
as pair of unigrams; sample from +10 for
the number; use cosine similarity on other
unigram; return pair in original order.

2. Non-4-digit number in bigram:
Use cosine similarity, ensure it’s a num-
ber.

3. Names: Ensure returned options are
capitalized.

4. Determinants, prepositions:
not change.

Do

Trigram

Default: split on the deter-
miner, then apply appropriate
cosine similarity on units
(e.g., unigram-det-unigram,
det-bigram)

1. det-det-unigram (e.g., at least
30000): Do not accept; generate new
pair.

2. Unigram is a 4-digit number: Ap-
ply resampling technique (sample from
+10).

3. Unigram is another number: Use
cosine similarity, ensure it’s a number.

Table 3: Handling Rules and Exceptions for Unigram, Bigram, and Trigram

25

Adaptive Speed Reading

April 29th, 2024

Pros

Cons

QA pairs almost invariably align with the
context, providing a higher relevance com-
pared to extractive methods.

Abstractive questions may differ funda-
mentally, such as asking for the best title
for a section, which requires specific atten-
tion.

The inference process for generating 20
QA pairs is relatively swift, taking approx-
imately 23 seconds without word count re-
strictions.

Occasional inaccuracies can occur, pro-
ducing less accurate answers for well-
formed questions.

The separate LLM designated for dis-
tractors efficiently generates plausible and
contextually appropriate false options.

Rarely, a nonsensical QA pair is produced,
which can undermine the quality of the
output.

The distractor LLM can handle answers of
any length, offering versatility in process-
ing varied input.

Distractors may be repeated exactly,
although these are easily identifiable
through direct string comparison, suggest-
ing a need for refinement in generation
rules.

The capability to generate exactly three
options consistently, with the option to
vary these through sampling, enhances the
flexibility of the system.

The additional LLM for distractors in-
creases both inference time and storage re-
quirements, potentially impacting system
performance.

Average Score

Table 4: Advantages and Disadvantages of Quiz Generation Pipeline

Average Performance Metrics of Models

Models
B bigbird-pegasus-large-arxiv
m led-large-16384-arxiv
B ong-t5-tglobal-base

0.200 A

0.175 1

0.150 4

0.125 4

0.100 4

0.075

0.050 A

0.025

Figure 13: Performance of all open-sourced fine-tuned models regarding summary generation of sci-
entific articles.

26

Adaptive Speed Reading April 29th, 2024

F User Trial Feedback

General Qverview
Covers general questions about the platform.

We would appreciate it if you could share your email below. Providing the email you
used to log in to our website allows for more personalised insights and feedback.
Please note that this step is optional.

Your answer

Rate your overall experience: *

Very Poor O O O @ O Excellent

Rate the overall UX/UI design of the website (layout, navigation, design, etc). *

Y P (o
Very Poor O U/ o/ O o) Excellent

Compared to the old design (UI/UX) of the website, how do you find the current
one?

(skip if you are a first-time user)

Worse O O O O ® Better

Clear selection

Figure 14: Example of the User Trial Feedback form

27

Adaptive Speed Reading April 29th, 2024

G Software Engineering Evaluation scores

OO

Performance Accessibility Best SEO
Praclices

Performance

@ First Contentful Paint Largest Contentful Paint

0.7s 0.7s

@ Total Blocking Time Cumulative Layout Shift

0 ms

Uses third-party cookies

accounts.dev

_ cf bm Nlclient? clerk_js_version=...

_cfuvid N/client?_clerk_js_version=...

Figure 16: Google Lighthouse ” Good Practices” Score Breakdown

28

Adaptive Speed Reading April 29th, 2024

Latency Distribution by Number of Users (Up to 50 Users)

1200 | —®— 50th Percentile Latency
—e— 099th Percentile Latency
—e— 99.9th Percentile Latency

1000

800

600

Latency (ms)

400

200}

10 20 30 40 50
Number of Users (Connections)

Figure 17: Latency plot for various number of simulates users

CEOOECEEEEE R E e r e e e e r e e

8453
8454
28297
28298
28299
28300
8455
36135 eg923
F2

1:10.61 nginx: worker process
0:24.84 nginx: worker process
9:55.76

9:56.16

0:56.45

09:56.23

0:10.93 nginx: worker process
0:00.36 htop

F8 F9 F10

QN O

OO0
©® N WA AL O
=1 e]
OCOLL,LL,OO
R NNNNN N

'n
B
=
NN ©

Figure 18: ’htop’ output displaying real-time system resource utilisation during peak server load
conditions.

29

	Introduction
	Background and Related Work
	Project Overview

	Project Design and Architecture
	Functionality Specification
	Software Engineering Design
	Front End Development
	Back End and Database

	 DevOps (Development & Operations)

	Technological and AI Integration
	Webgazer Application and Optimisation
	WPM Calculation and Display Mechanics in FlashMode
	WebGazer: Usage and Challenges
	Algorithm Development and Milestones
	Adaptive WPM Adjustment: Custom Integration and Functionality
	Limitations

	LLM-Based Implementation
	Quiz Generation
	Chunk Complexity
	Summary Generation

	User Trials
	Ethics and Privacy
	Trial Set-Up
	Results and Outcomes
	User Trials 1
	User Trials 2
	User Trials 3

	Evaluation
	Software Engineering
	DocMode
	FlashMode
	Quiz Generation
	User Experience and Analytics Page

	Conclusion and Future Work
	Appendices
	Diagram overview of the Website
	Entity Relationship Diagram of the database
	Project Management
	WebGazer Related Information
	LLM
	User Trial Feedback
	Software Engineering Evaluation scores

